MapReduce ML & Clustering Algorithms

Sergei Vassilvitskii

Reminder

MapReduce:

- A trade-off between ease of use & possible parallelism

Graph Algorithms Approaches:

- Reduce input size (filtering)
- Graph specific optimizations (Pregel & Giraph)

Today

Machine Learning

- More filtering -- reducing input size
- Machine Learning Optimizations & AllReduce

Applications:

- k-means clustering

- Fitting a function to the data

- Fitting a function to the data

Examples:

- Classification:
 - Data (x,y) pairs $x \in \mathbb{R}^d, y = \pm 1$
 - Temperature = 15, Pressure = 755mm, Cloud Cover = 90%. : No Rain
 - Temperature = 17, Pressure = 760mm, Cloud Cover = 75% : No Rain
 - Temperature = 23, Pressure = 766mm, Cloud Cover = 95% : Rain
 - Temperature = 19, Pressure = 740mm, Cloud Cover = 100% : ???

- Fitting a function to the data

Examples:

- Classification.
- Regression:
 - Data (x,y) pairs $x \in \mathbb{R}^d, y \in \mathbb{R}$
 - Temperature = 15, Pressure = 755mm, Cloud Cover = 90%. : 1mm Rain
 - Temperature = 17, Pressure = 760mm, Cloud Cover = 75% : 0mm Rain
 - Temperature = 23, Pressure = 766mm, Cloud Cover = 95% : 9mm Rain
 - Temperature = 19, Pressure = 740mm, Cloud Cover = 100% : ???

- Fitting a function to the data

Examples:

- Classification.
- Regression.
- Clustering:
 - ullet Data $x\in \mathbb{R}^d$, Goal: find a sensible grouping into k groups

Machine Learning

Definition:

- Fitting a function to the data

Examples:

- Classification.
- Regression.
- Clustering.

Today:

- Regression & Clustering

Regression

Aarhus (yesterday)

Data:

- Temperature = 15, Pressure = 755mm, Cloud Cover = 90%. : 1mm
- Temperature = 17, Pressure = 760mm, Cloud Cover = 75% : 0mm
- Temperature = 23, Pressure = 766mm, Cloud Cover = 95% : 9mm
- Temperature = 11, Pressure = 740mm, Cloud Cover = 100% : 5mm

Matrix Form:

$$x = \begin{pmatrix} 15 & 755 & 90 \\ 17 & 760 & 75 \\ 23 & 766 & 95 \\ 11 & 740 & 100 \end{pmatrix} \qquad y = \begin{pmatrix} 1 \\ 0 \\ 9 \\ 5 \end{pmatrix}$$

- Approximate y by a linear function of x :
- Example: 0.05 weight on Temperature, 0 on pressure , 0.1 on Humidity

$$x = \begin{pmatrix} 15 & 755 & 90 \\ 17 & 760 & 75 \\ 23 & 766 & 95 \\ 11 & 740 & 100 \end{pmatrix} \qquad y = \begin{pmatrix} 1 \\ 0 \\ 9 \\ 5 \end{pmatrix}$$

- Approximate y by a linear function of x :
- Example: 0.05 weight on Temperature, 0 on pressure , 0.1 on Humidity
- Predictions: $15 \cdot 0.05 + 0.1 \cdot 90 = 1.65$

 $17 \cdot 0.05 + 0.1 \cdot 75 = 1.6$

- Find heta that minimizes the squared distance: $\|x\cdot heta-y\|^2$

$$x = \begin{pmatrix} 15 & 755 & 90 \\ 17 & 760 & 75 \\ 23 & 766 & 95 \\ 11 & 740 & 100 \end{pmatrix} \qquad \qquad y = \begin{pmatrix} 1 \\ 0 \\ 9 \\ 5 \end{pmatrix}$$

- Approximate y by a linear function of x :
- Example: 0.05 weight on Temperature, 0 on pressure , 0.1 on Humidity
- Predictions: $15 \cdot 0.05 + 0.1 \cdot 90 = 1.65$

 $17 \cdot 0.05 + 0.1 \cdot 75 = 1.6$

- Find θ that minimizes the squared distance: $\|x\cdot \theta y\|^2$
- Very simple!
 - Is this complex enough to capture all of the data?

$$x = \begin{pmatrix} 15 & 755 & 90 \\ 17 & 760 & 75 \\ 23 & 766 & 95 \\ 11 & 740 & 100 \end{pmatrix} \qquad \qquad y = \begin{pmatrix} 1 \\ 0 \\ 9 \\ 5 \end{pmatrix}$$

- Approximate y by a linear function of x :
- Example: 0.05 weight on Temperature, 0 on pressure , 0.1 on Humidity
- Predictions: $15 \cdot 0.05 + 0.1 \cdot 90 = 1.65$

 $17 \cdot 0.05 + 0.1 \cdot 75 = 1.6$

- Find θ that minimizes the squared distance: $\|x\cdot \theta y\|^2$
- Very simple!
 - Is this complex enough to capture all of the data?
 - Maybe if you have a lot of features

- Examples $X \in \mathbb{R}^{n imes d}$, labels: $Y \in \mathbb{R}^{n imes 1}$
- Find a set of weights $\theta \in \mathbb{R}^{d \times 1}$ that minimizes: $\|X \cdot \theta Y\|^2$

- Examples $X \in \mathbb{R}^{n imes d}$, labels: $Y \in \mathbb{R}^{n imes 1}$
- Find a set of weights $\theta \in \mathbb{R}^{d \times 1}$ that minimizes: $\|X \cdot \theta Y\|^2$

- Examples $X \in \mathbb{R}^{n imes d}$, labels: $Y \in \mathbb{R}^{n imes 1}$
- Find a set of weights $\theta \in \mathbb{R}^{d \times 1}$ that minimizes: $\|X \cdot \theta Y\|^2$

- If the number of examples n is large..
- ...but the dimensionality d is small
- Then:
 - $(X^TX) \in \mathbb{R}^{d \times d}$ and $X^TY \in \mathbb{R}^{d \times 1}$ are small.

- Examples $X \in \mathbb{R}^{n imes d}$, labels: $Y \in \mathbb{R}^{n imes 1}$
- Find a set of weights $\theta \in \mathbb{R}^{d \times 1}$ that minimizes: $\|X \cdot \theta Y\|^2$

- If the number of examples n is large..
- ...but the dimensionality d is small
- Then:
 - $(X^TX) \in \mathbb{R}^{d \times d}$ and $X^TY \in \mathbb{R}^{d \times 1}$ are small.
 - ...and therefore fit onto a single machine

- Examples $X \in \mathbb{R}^{n imes d}$, labels: $Y \in \mathbb{R}^{n imes 1}$
- Find a set of weights $\theta \in \mathbb{R}^{d \times 1}$ that minimizes: $\|X \cdot \theta Y\|^2$

- If the number of examples n is large..
- ...but the dimensionality d is small
- Then:
 - $(X^TX) \in \mathbb{R}^{d \times d}$ and $X^TY \in \mathbb{R}^{d \times 1}$ are small.
 - ...and therefore fit onto a single machine
- Idea: Compute $X^T X, X^T Y$ in parallel, finish on a single machine

Computation

Idea:

- Compute $X^T X, X^T Y$ in parallel, finish on a single machine

Computation

Idea:

- Compute $X^T X, X^T Y$ in parallel, finish on a single machine

How hard?

- Computing Matrix-Matrix & Matrix-Vector products
- For square $\sqrt{n} \times \sqrt{n}$ matrices:

Computation

Idea:

- Compute $X^T X, X^T Y$ in parallel, finish on a single machine

How hard?

- Computing Matrix-Matrix & Matrix-Vector products
- For square $\sqrt{n} \times \sqrt{n}$ matrices:

•
$$O\left(\frac{n\sqrt{n}}{m\sqrt{M}}\right)$$
 time
• and! Total memory $O(1)$ when $m = n^{3/4}, M = n^{3/2}$
• and! Machine memory
• $\Omega\left(\frac{n\sqrt{n}}{m\sqrt{M}}\right)$

How far can you go?

ML Theory

- Statistical query model
- Interact with data only via some f(x, y) that's averaged over all of the examples.

$$f(X,Y) = \frac{1}{n} \sum_{(x,y)\in(X\times Y)} f(x,y)$$

- This is trivial to parallelize

Statistical Query Model

What can you do using the statistical query model?

- Linear Regression
- Naive Bayes
- Logistic Regression
- Neural Networks
- Principle Component Analysis (PCA)

Statistical Query Model

What can you do using the statistical query model?

But required runtime per step....

- Linear Regression $O(d^2)$
- Naive Bayes O(d)
- Logistic Regression $O(d^2)$
- Neural Networks O(d)
- Principle Component Analysis (PCA) $O(d^2)$

Statistical Query Model

What can you do using the statistical query model?

But required runtime per step....

- Linear Regression $O(d^2)$
- Naive Bayes O(d)
- Logistic Regression $O(d^2)$
- Neural Networks O(d)
- Principle Component Analysis (PCA) $O(d^2)$

... Applicable only to low dimensional spaces

What if the dimension is too high? Goal Minimize: $J(\theta) = ||X \cdot \theta - Y||^2$

Saturday, August 25, 12

What if the dimension is too high?

Goal Minimize: $J(\theta) = ||X \cdot \theta - Y||^2$

- greedy solution: gradient descent

 $\theta_{\rm new} = \theta_{\rm old} + \alpha \cdot \nabla J(\theta_{\rm old})$

- Single example gradient:

$$\frac{\partial}{\partial \theta_j} J(\theta) = (y - x \cdot \theta) \cdot x_j$$

MR ML Algorithmics

Batch Gradient Descent

Given examples:

- 1. Compute gradient for every example for every coordinate

$$\frac{\partial}{\partial \theta_j} J(\theta) = (y - x \cdot \theta) \cdot x_j$$

• Easy to parallelize!

Batch Gradient Descent

Given examples:

- 1. Compute gradient for every example for every coordinate

$$\frac{\partial}{\partial \theta_j} J(\theta) = (y - x \cdot \theta) \cdot x_j$$

- Easy to parallelize!
- 2. Update θ :

$$\theta_{\text{new}(j)} = \theta_{\text{old}(j)} + \alpha \sum_{i=1}^{n} (y^{(i)} - x^{(i)} \cdot \theta) \cdot x_j^{(i)}$$

MR ML Algorithmics

Saturday, August 25, 12

Batch Gradient Descent

Given examples:

- 1. Compute gradient for every example for every coordinate

$$\frac{\partial}{\partial \theta_j} J(\theta) = (y - x \cdot \theta) \cdot x_j$$

- Easy to parallelize!
- 2. Update θ :

$$\theta_{\text{new}(j)} = \theta_{\text{old}(j)} + \alpha \sum_{i=1}^{n} (y^{(i)} - x^{(i)} \cdot \theta) \cdot x_j^{(i)}$$

- 3. Repeat until convergence
 - Will converge given mild conditions on $\ lpha$

Performance

Batch Gradient Descent in MR:

- Easy to write
- But requires many many rounds to converge...
- ...this is inefficient in MapReduce
- Remember, aimed for O(1) rounds.

Performance

Batch Gradient Descent in MR:

- Easy to write
- But requires many many rounds to converge...
- ...this is inefficient in MapReduce.
- Remember, aimed for O(1) rounds.

Same problem exists sequentially:

- Batch Gradient Descent looks at all examples in every round!

What if we update the gradient after every example

- Read one example: $(x^{(i)}, y^{(i)})$

What if we update the gradient after every example

- Read one example: $(x^{(i)}, y^{(i)})$
- Update the parameter: $\theta_{\mathrm{new}(j)} = \theta_{\mathrm{old}(j)} + \alpha(y^{(i)} x^{(i)} \cdot \theta) \cdot x_j^{(i)}$

What if we update the gradient after every example

- Read one example: $(x^{(i)}, y^{(i)})$
- Update the parameter: $\theta_{\mathrm{new}(j)} = \theta_{\mathrm{old}(j)} + \alpha(y^{(i)} x^{(i)} \cdot \theta) \cdot x_j^{(i)}$
- Repeat until changes are minor
- Again, converges to somewhere near the local minimum

Known as Stochastic Gradient Descent

Stochastic GS & All-Reduce

How to parallelize stochastic gradient descent?

- Main Loop:

$$\theta_{\text{new}(j)} = \theta_{\text{old}(j)} + \alpha(y^{(i)} - x^{(i)} \cdot \theta) \cdot x_j^{(i)}$$
- First compute $y^{(i)} - x^{(i)} \cdot \theta$
- Then: perform the update Requires all coordinates
Easy to parallelize by coordinate

MR ML Algorithmics

All-Reduce

All-Reduce

All-Reduce

- Very optimized !
- Can get a significant speed up over straightforward Hadoop
- Mostly maintain fault tolerance given by Hadoop
- Pipelining means nodes are never idle
 - Delay propagation of gradient by a few rounds

All-Reduce

- Very optimized !
- Can get a significant speed up over straightforward Hadoop
- Mostly maintain fault tolerance given by Hadoop
- Pipelining means nodes are never idle
 - Delay propagation of gradient by a few rounds
- Gets good results!
- Can be made to work with other Statistical Query Algorithms

Regression Overview

Two approaches:

- Exact Computation
 - Works only if the dimension is small (quadratic algorithms on dimension allowed)
- Streaming style computation
 - Works even if dimension is large
 - AllReduce makes MapReduce more scalable

Today

Machine Learning

- More filtering -- reducing input size
- Machine Learning Optimizations & AllReduce

Applications:

- k-means clustering

Clustering

Clustering:

- Group similar items together

One of the oldest problems in CS:

- Thousands of papers
- Hundreds of algorithms

Initialize with random clusters

Assign each point to nearest center

Recompute optimum centers (means)

Repeat: Assign points to nearest center

Repeat: Recompute centers

Repeat...

Repeat...Until clustering does not change

Repeat...Until clustering does not change

Total error reduced at every step – guaranteed to converge.

MD	N/1	۸la	orit	hmicc
IVIN		Aly	υπ	mmes

Repeat...Until clustering does not change

Total error reduced at every step – guaranteed to converge.

Minimizes:
$$\phi(X,C) = \sum_{x \in X} d(x,C)^2$$

MR ML Algorithmics

56

Sergei Vassilvitskii

Random?

MR ML Algorithmics

Random?

Random? A bad idea

MR ML Algorithmics

Sergei Vassilvitskii

Random? A bad idea

Even with many random restarts!

MR ML Algorithmics

MR ML Algorithmics

Sergei Vassilvitskii

MR ML Algorithmics

Sergei Vassilvitskii

MR ML Algorithmics

Sergei Vassilvitskii

Ο

MR ML Algorithmics

Sergei Vassilvitskii

Ο

MR ML Algorithmics

Sergei Vassilvitskii

MR ML Algorithmics

Sergei Vassilvitskii

Interpolate between two methods. Give preference to further points. Let D(p) be the distance between p and the nearest cluster center. Sample next center proportionally to $D^{\alpha}(p)$.
Interpolate between two methods. Give preference to further points.

Let D(p) be the distance between p and the nearest cluster center. Sample next center proportionally to $D^{\alpha}(p)$.

```
kmeans++:
   Select first point uniformly at random
   for (int i=1; i < k; ++i) {
      Select next point p with probability \frac{D^{\alpha}(p)}{\sum_{x} D^{\alpha}(p)};
      UpdateDistances();
   }
}
```

Interpolate between two methods. Give preference to further points.

Let D(p) be the distance between p and the nearest cluster center. Sample next center proportionally to $D^{\alpha}(p)$.

```
kmeans++:
Select first point uniformly at random
for (int i=1; i < k; ++i){
Select next point p with probability \frac{D^{\alpha}(p)}{\sum_{x} D^{\alpha}(p)};
UpdateDistances();
}
Original Lloyd's: \alpha = 0
Furthest Point: \alpha = \infty
k-means++: \alpha = 2
```


MR ML Algorithmics

70

Sergei Vassilvitskii

 \bigcirc

MR ML Algorithmics

70

Sergei Vassilvitskii

 \bigcirc

MR ML Algorithmics

70

Sergei Vassilvitskii

 \bigcirc

MR ML Algorithmics

70

Sergei Vassilvitskii

 \bigcirc

Theorem [AV '07]: k-means++ guarantees a $\Theta(\log k)$ approximation

 \bigcirc

Algorithm

Initialization:

```
kmeans++:
   Select first point uniformly at random
   for (int i=1; i < k; ++i){
      Select next point p with probability \frac{D^2(p)}{\sum_p D^2(p)};
   UpdateDistances();
}
```

Very Sequential!

- Must update all distances before selecting next cluster

Goal: Simulate k-means++

k-means++:

- Is a "soft" greedy algorithm
- Adapt sample & prune technique
- Sample multiple points in each round
- In the end, prune back down to k points

```
kmeans++:
   Select first point uniformly at random
   for (int i=1; i < k; ++i){
      Select next point p with probability \frac{D^2(p)}{\sum_p D^2(p)};
   UpdateDistances();
}
```

```
kmeans++:
   Select first point c uniformly at random
   for (int i=1; i < log<sub>l</sub>(\phi(X, c)); ++i){
      Select point p independently with probability k \cdot l \cdot \frac{D^{\alpha}(p)}{\sum_{x} D^{\alpha}(p)}
      UpdateDistances();
   }
   Prune to k points total by clustering the clusters
}
```

```
kmeans++:
    Select first point c uniformly at random
    for (int i=1; i < log<sub>l</sub>(\phi(X, c)); ++i){
        Select point p independently with probability k \cdot \ell \cdot \frac{D^{\alpha}(p)}{\sum_{x} D^{\alpha}(p)}
        UpdateDistances();
    }
    Prune to k points total by clustering the clusters
}
Independent selection
    Easy MR
```



```
kmeans++:
Select first point c uniformly at random
for (int i=1; i < log<sub>l</sub>(\phi(X, c)); ++i){
Select point p independently with probability k \cdot \ell \cdot \frac{D^{\alpha}(p)}{\sum_{x} D^{\alpha}(p)}
UpdateDistances();
}
Prune to k points total by clustering the clusters
}
Independent selection
Easy MR
```


k-means||: Analysis

How Many Rounds?

- Theorem: After $O(\log_{\ell}(n\Delta))$ rounds, guarantee O(1) approximation
- In practice: fewer iterations are needed
- Need to re-cluster $O(k\ell \log_{\ell}(n\Delta))$ intermediate centers

Discussion:

- Number of rounds independent of k
- Tradeoff between number of rounds and memory

How well does this work?

Performance vs. k-means++

- Even better on small datasets: 4600 points, 50 dimensions (SPAM)
- Accuracy:

	k = 20		k = 50		k = 100	
	seed	final	seed	final	seed	final
Random		1,528	_	1,488		1,384
k-means++	460	233	110	68	40	24
$\frac{k\text{-means}}{\ell=1/2,r=5}$	310	241	82	65	29	23
$\frac{k \text{-means}}{\ell = 2, r = 5}$	260	234	69	66	24	24

- Time (iterations):

	k = 20	k = 50	k = 100
Random	176.4	166.8	60.4
k-means++	38.3	42.2	36.6
$\begin{array}{l} k\text{-means} \\ \ell = 1/2, r = 5 \end{array}$	36.9	30.8	30.2
$\frac{k \text{-means}}{\ell = 2, r = 5}$	23.3	28.1	29.7

Three prevalent ideas:

- If the dimension is small: prune (in a smart way)
- If the dimension is large, figure out what to optimize All-Reduce
- For clustering, adapt methods by oversampling & pruning

Conclusion: MapReduce

Overall:

- A robust implementation of the BSP model
- Easy to work with, easy to think about

Things to Keep in Mind:

- The data will be skewed!
- For specific classes of problems, additional optimizations possible
 - Graphs with Pregel, ML with All-Reduce
- Wisely sampling the input & using the sample gets you very far

Conclusion: MapReduce

Overall:

- A robust implementation of the BSP model
- Easy to work with, easy to think about

Things to Keep in Mind:

- The data will be skewed!
- For specific classes of problems, additional optimizations possible
 - Graphs with Pregel, ML with All-Reduce
- Wisely sampling the input & using the sample gets you very far
- Apparently it never rains in Aarhus :-)

References

- Map-Reduce for Machine Learning on Multicore. Cheng-Tao Chu, Sang Kyun Kim, Yi-An Lin, YuanYuan Yu, Gary Bradski, Andrew Ng, Kunle Olukotun, NIPS 2006.
- Space-Round Tradeoffs for MapReduce Computations. Andrea Pietracaprina, Geppino Pucci, Matteo Riondato, Francesco Silvestri, Eli Upfal, ICS 2012.
- Efficient Noise-Tolerant Learning from Statistical Queries. Michael Kearns, STOC 1993.
- A Reliable Effective Terascale Linear Learning System. Alekh Agarwal, Olivier Chapelle, Miroslav Dudik, John Langford, ArXiv 2011.
- k-means++: The Advantages of Careful Seeding. David Arthur, S.V., SODA 2007.
- Scalable k-means++. Bahman Bahmani, Benjamin Moseley, Andrea Vattani, Ravi Kumar, S.V., VLDB 2012.